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CHAPTER 1 

Prologue 

1. 1 Study Objective and Methodology 

The primary oojective of this investigation was to analytically 

determine tne effect of a plane dielectric interface upon the radiation 

loss of a curved channel dielectric waveguide embedded in a dense substrate 

and bent in a plane parallel to that of the material interface. The radiation 

loss from bent dielectric waveguides is of interest for a variety of potential 

applications in integrated optics. Knowledge of the factors influencing tne 

radiation from bend dielectric waveguides will allow the design of inte:raied 

optical component characteristics which, in one application, may result in 

decreased radiation to conserve signal energy or which, in another applica- 

tion, may achieve enhanced radiation effects in order to optimize the coupling 

between vatious optical waveguides. An obvious example for which the conser- 

vation of signal energy is of prime concern is the dielectric fiber trans- 

mission line used in simple point-to-point data transfer applications. 

Examples of integrated optical components in which some specific level of 

radiation is desired include optical filters (e.g., ring resonator discrimi- 

nators; cf. [1]) and optical directional couplers (cf. [2]). Figure 1.1 

illustrates potential realizations of these latter components. 

Arnaud (cf. [3]) has treated radiation loss from a slab-loaded, bent 

dielectric rod, and this structure is the one described in the literature 

that has the most in common with the configuration considered herein. 

JXiZmULs^.,:^-„•.- ••••-«•-    ... A 
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Resonant at  fk 

n > n2 >> n | 

(a)    A   RING   RESONATOR   DISCRIMINATOR 

n > n 2 » n | 

(b)     A    DIRECTIONAL   COUPLER 

Figure 1.1 Dielectric Channel Waveguides in Potential 
Integrated Optics Applications 
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nowever, primarily because of the finite extent of tne slab ana the fact 

tnat the refractive indices of the slab and the rod are equal, Arnaud's 

problem differs significantly from that discussed in this report. Indeed, 

the differences are  suostantiai enough to preclude extensive corroboratlon 

of eitner study's results by direct comparison. 

Figure 1.2 illustrates tne fundamental geometry of the problem ana 

depicts the coordinate reference frames cnosen for tne analysis. The 

refractive indices of the channel waveguide, the substrate material, and 

the covering material nave the values  n, n„, and n, , respectively. 

These refractive indices are  ordered according to the relation n > n?» n., 

the relation n„ >> n, expressing what is meant by "dense" as applied to 

the substrate material. A global, circular-cylindrical reference frame 

witn spatial coordinates r, 9, and 2 has its origin at the point 0, and 

a local cartesian reference frame with spatial coordinates x, y, ana s 

has its origin at the point (R , 0, 0) relative to the global frame. The 

extent of the channel waveguide is defined by the raaial boundaries at r" 

and r"' ana by the coordinates 2 = 0 and 2 • 2", which define hori2ontal 

planes between which the guide is confined. The quantity Ro is given by the 

expression R = (r1 + rtnYZ   and is defined to be the radius of curvature of the channel 
waveguide. 

A propagating mode with phase factor exp i(wt - k v R <p) is assumed 

to exist, where k • 00/u e  is the free space propagation constant ana y 

is the normali2ed (to k ), complex propagation constant of the mode in the 

curved channgel waveguide. Given that the normalised propagation constant 

for the straight channel waveguide is y  , the analysis proceeds to compute 

a first order representation of y    of the form 

Y = Y - ict , a > 0 (1.1) 

.. •••• - —     ~-T m •! rr.1.1^1 «fr, rtM—flftABVi 
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n > n 2 » n 

figure 1.2   A Curved Channel Waveguide Embedded 
in a Dense Substrate 
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where a is the normalized attenuation coefficient of tne mode. The mode 

attenuation due to continuous radiation from the bend following propagation 

through an angular sector 9 of the channel guide is then given Dy the 

factor exp (-ak R 0). 

Once a has oeen determined, the study objective is attained via ö 

comparison of 01 with the normalized attenuation constant of a cent channel 

waveguide eimoedded in a homogeneous medium. 

1.2 Summary of Results 

The normalized attenuation constant a' of a bent, rectangular dielec- 

tric waveguide immersed in a nomogeneous medium has the general forn [5] 

C.    k R Q{0) 
.' -    n   . 0 ow' a    -   r— e 

1 0 0 

wnere C > 0 and Q(0) < ö are parameters depending upon material 

characteristics of the guide (including physical dimensions) and its 

surrounding medium as well as the specific mode assumed to be propagating 

in the guide. As a result of tnis investigation, the normalized atten- 

uation constant a for the bent, rectangular dielectric waveguide embedded 

in a dense substrate below a material interface is found to oe of the form 

v 0 0' 

where C. > 0 and q?(0) < 0 depend upon the channel guide, substrate, 

and covering medium characteristics (including the physical dimensions of 

the guide) and upon the specific mode assumed to be propagating in the 

guide. 

-•»•*»'-~      •—^ •• -^ - --• --^Hl-'rnf-in---! '•• 
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Three observations are of importance. First, the quantities C, 

and C,. are in general unequal, as are Q(0) and q?(0) (although a 

certain formal similarity between the latter two exists). Second, the 

fundamental exponential dependence of Doth a' and a on R  . s tne 

same. Thira, the algebraic dependence of a1 and a on R  is distinctly 
3/2 

different. Tne (5—)   algebraic dependence of a upon R  arises as 
K0 0 

the leading term of the asymptotic expansion of a and thus imparts a 

lateral wave characteristic (cf. 4, Section 5.5) to the radiation loss 

of a rectangular dielectric guide in a aense substrata below a material 

1 ^ 
interface. Indeed, tne absence of a (5-)  leading term in the asymptotic 

0 
expansion of a  may be thought of as resulting from the first oraer can- 

cellation of source and image field aue to the presence of the interface. 

As a means of comparing tne influence of the factors  - and 

0 0' 

(k0R0) 
3/2 on the radiation loss of their associated waveguiaing structures, 

a' and a are  plotted versus k R  for bent, rectangular dielectric wave- 

guides whose dimensions and/or refractive indices are  chosen so tnat 

Q(0) = q?(0). This not only assures that the exponential variation witn 

R  will be the same in each case, but it also corresponds to a situation 

in which propagation constant along the central axis of each guide is the 

same. For the cases considered, a is found to be always less than a' 

and is, in particular, less than an order of magnitude smaller than a' 

for k R = 500 and between one and two orders of magnitude smaller than 
00 3 

a' for k R = 5000. This indicates that one may in some instances 
00 

achieve a significant reduction in the radiation loss of a bent, rectangular 

dielectric waveouide by embedding it below a high contrast dielectric inter- 

face in the material of greater refractive index. 
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1.3 Analytical Preliminaries 

This report will not present a derivation of the general form of a, 

but will merely quote the result as given in ~Lb],  Chapter 9. Thus 

a = 
k P 
o 

where 

P » 2  a •£. xH ds 
j s 0  o 

{E x 6H - 6 öE x H~} • a d 
o   y z; 

(1.2) 

(1.3) 

v I .*J 

y=yr 

In (1.3), the integration extends over an infinite plane containing a 

cross section of the channel waveguide, ana y  is some point chosen 

outside the bend (beyond r'") of the curved channel guide where the fields 

have decayed sufficiently (cf.[2]). The fields E and H are those of 

the straight channel guide, and E" and H~ are the fields of tne 3 o      o 

straight cnannel traveling in the "negative"o (or s)-direction. Tne fields 

5E and 5H constitute that portion of the fields outside the curved 

channel guide wnich have oeen reflected from the caustic or turning point 

beyond which the mode must radiate in a radially outward direction. The 

fundamental analytical task of this investigation was that of expressing 

the fields T£    and <5H in terms of known quantities, i.e., in terms of 

E , TT , Y . R » etc. 
O   O   O   0 

As a result of the circular-cylindrical symmetry of the glODal 

reference frame, our subsequent analysis will be facilitated by concentra- 

ting on the field components E  and h , although we must eventually 

consider all of the field components. Via Maxwell's equations and standard 

v_ _ 



•"-^••••^1 

analysis for circular-cylindrical  geometry, we find that we may express the 

four remaining field components in terms of    E     and    rl  , whence 

3H R    3E 
(kZ  +  -K)   E     =   K   k     -r*-   lY   k     -ft-r£ v 2'    $ o o    3r o r      3z 

oZ 

,        .2 
2   ,     o (kc + -2y)   E„ -       Qj  k 

32 

2Ro H    + V "r 'V  "o r   "z '  3r3z "z 

R 2                      2        3E 
/i,2   .     3   K  M    _     i  n    .      z •   .     ^o    3Hz 

r2
) H<D ' - r      ko    3r        1>ko r        3z 3z 

(k2 + -^ )H    = ^-yk2 -°-E    + A-H * .,2 ' r      cor      z      3roZ    z 3z ^o 

(1.5a) 

(1.5b) 

(1. 5c) 

(1.5a) 

where    ;    = /u /e ,    k2 = n2k2 for    z > 0,    k2 • n2k2    for    z < 0. 
ooo                    I   o CO 

We will  show in Chapter 2 that both E    and H    have Fourier-Bessel 

representations of the form 

Ez(r,<p,z) = e 
f 

'^     Eja,z)Jjknar)ada 
o 
J ' 

H2(r,p,z) = e"1v4) [ H (a,z)J (k ar)ada 

o 

(1.6a) 

(1.6b) 

All of the desired field components have similar representations, and 

the z-variation is such as to yeild the following equivalence of operators 

/ 32 . .2,  .2 2 
{—j + k ) = k a 
3z'        ° 

for the field transforms. 

For example, consider the electric field component E  given by 

(1.7) 

E* = e 
•iv<j> 

E (a,z)Jv(koar)ada (1.8) 

_»^_ 
-        — - — - -••-*• "• 
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L(a,z) is the field transform of E> and (—y+ k )E.(a,z) ' 

,2 2= dZ 

0   $ 

Substitution of (1.6a), (1.6b), and (1.8) into (1.5a) and making use of 

(1.7) gives 

iyR 2? .,    vx o at. = l£_a ~ 7I.-:T  H o  3 
o   l,(koJ   z " rk  3z z vv o r o 

(1.9a) 

In a similar fashion we find the following as well: 

a2E 
J'(k ar) ; YR 

0    O    u    + 2L_ v    0                  d_ 
r            z      k J  (k ar)          3z      z 

o vx o 

22        ^
Ro    3 B      . 1^U2       j; (koar)   • 

a H9 rlT   37 Hz - 1    C„ J.(^ar)      Lz vv o 

J'.U^r) 
2u    -      yRonl,2      ?    +    a 

a H    -       -    E    + -j-   -^-(iraTy     Fz    Hz 
O O Vv   0 

(1.9b) 

(1.9c) 

(1.9c 

The relationships  (1.10a)  through (l.lOd)  between the field (Fourier-ßessel) 

transforms will  be of use in Chapter 2. 

dügTrinÜMBiii   i    ii   i ii i i- a liMiirtlfa—hffrt1- --   ••   — i 
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CHAPTER 2 

INTEGRAL REPRESENTATIONS OF THE 

CARTESIAN FIELD COMPONENTS 

2.1 Introduction 

This chapter is devoted to finding integral representations for tne 

Cartesian field components E  and H . As mentioned in Chapter 1, 

knowledge of these allows one to determine the remaining four field compo- 

nents via (1.5a) through (1.5d). The components  E  and H  are pre- 

ferred by the circular-cylindrical geometry of our problem to the extent 

that they both satisfy the homogeneous (in source free regions), scalar wave 

equation, i.e., the Helmholtz equation. This fact, together with the 

assumed form of the field variation with the spatial coordinate $, allows 

specification of the Fourier-Bessel transforms of E and H to within mul- 

tiplicative factors which must be determined through the application of 

boundary  and source conditions. Explicit evaluation of these is the 

subject of Section 2.3. 

Although at first glance the final form of the integral representations 

of E and H seems too cumbersome for practical use due to the complexity 

of the required integrations, it will be seen in Chapter 3 that the integral 

representations derived in this chapter are amenable to asymptotic analysis 

when k R >> 1, i.e., when the radius of curvature of the bend channel guide 

is large relative to the wavelength of the propagating fields. 

— „«_^. ii •üiittiiMrüttaiMir—iim iijauTiiniii - i 
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2.2 Extended Fourier-Bessel Representations for Field Solutions of tne 

Helmholtz Equation 

Let F(r,<p,z) = 4>(r,z)e"1v<? be a scalar field satisfying the 

Helmholtz equation for source-free regions, 

(V2 + k2)F(r,(?,z) = 0,   then for v = k
0YRQ> 

I 
r9rr3r ^ 

' o o 

I 
*(r»z) = 0 (2.1) 

2   2 2 2   ° 2 where, as before, k = n,k  for z > 0, and k = nXk  ror z < 0. 

In this section, *(r,z) is a generic symbol representative of either 

E (r,z) or H (r,z), since the mathematical manipulations required herein 

do not require us to distinguish these two field components. Appropriate 

associations between E (r,z) and H (r,z) and the results of this section 

will be made as required in later sections. 

From the form of F {r,q,z)  we know that there is a Fourier-Bessel 

transform representation (cf. [6]) for v(r,z), wnenre 

$(r,z) = , £v(a,z)Jv(koar)ada 

7   r 
*(a,z) = k !*(r,z)J (k ar)rdr 

o 

(2.2) 

(2.3) 

where J  is a Bessel function of order v. We shall refer to i>{r,z) 

as the field and to *(r,z) as the field transform. 

Substitution of (2.2) into (2.1) produces the result 

S + ko(n'2 "a2) *v(a'z) = ° (2.4) 

' — - .. -.-^.-   r. ^- . , „ummi ,tm,*M*fläMm^riti~; ,._ 
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where    ri' = n,    for z > 0,    and    n'  = n2    for    z < 0. 

If we consider    z = z\ where    z" <  z' <  0, as a plane in which point 

sources lie, and if we likewise require that the field should vanish for 

I zj +°°,    then  (2.4)  has solutions 

-k u.z 
I   (a,z)  = A(a)e    °   '   ,      z > 0 
v — 

(2.5) 

-k   U„Z kr.U?Z 

*v (a,z) - Bp(a)e   ol    + Bp(a)e ° c        z'<z<0 

«     (a,z) = C(a)e 
koU22 

z < z" 

(2.6) 

2.7! 

where 

2       2 \ 
u-,   =  (a - n,)     ,    Re u,   > 0 

2        2 *s 
Up =  (a - ru)     ,    Re u2 > 0 

(2.8; 

(2.9) 

With (2.5),  (2.6), and (2.7) we have determined the field transforms 

except for a set of multiplicative factors dependent upon    a.    In the 

following sections we will  apply source and boundary conditions to deter- 

mine these factors.    At that time it will  be necessary to identify our 

field <J>(r,z)    as either the electric field    E  (r,z)    or the magnetic 

field   H (r,z). 

To facilitate the asymptotic analysis of Chapter 3,  it is desirable 

to extend the range of integration in  (2.2)  to the negative a axis.    To 

do this we recall  that 

Jv(oa)  - WH^M • H^2)(aa)} 

and  employ the circuital relations for the Bessel functions so that (2.2) 

becomes 

•*•*•"— -*-— 
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*{r,z) - h 
oog •Ifl 

i (a,z)F^(k ra)ada 
vv v        o (2.10) 

Figure 2.1  illustrates the integration contour of    *(r,z]  in toe complex 

a-plane. The branch cuts associated witn n, and n0 are tnose which must 
1      2 

not be crossed if we are to insure that Re u, > 0 and Re u0 > C. Some 

slight loss is assumed in both the covering medium and the substrate in 

order to impart a small imaginary component to both n, and r»«« ~>r>c  "r^'"cn 

(2' cut running along the negative real axis insures that H, '(k ar) in (2.10) 
V    G 

is sinale-valued. 

2.3    Evaluation of the Field Transforms 

2.3.1    Equivalent Polarization Sources 

The concept upon which the analysis of this section rests is that of 

equivalent polarization currents  (cf.  [7])    which can be usec to convert 

the sourceless three medium problem into an equivalent two medium problem 

with sources below the dielectric interface.    This approach attributes  the 

fields existing outside the dielectric channel  to the radiation from an 

arra.y of polarization current sources contained within the geometrical 

boundaries of the channel waveguide but embedded in the substrate meaium 

only.    This circumstance is illustrated in Figure 2.2. 

The justification for this procedure follows from a consideration of 

the differential  form of Ampere's Law,    i.e., the curl    H    relation from 

Maxwell's equations.     In the channel  region, we have 

2    * 
V * H = i w n c E 

o 

and in the substrate region the fields must satisfy 

(2.11) 

—« .^•Mifc__^_ ^MMtfflhtttaBitui^^^^. t ^.,JL J 
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a - PLANE 
-7r<arg a ^ 7r 

^ Re  a 

Figure 2.1    The Contour of Integration for    <I>(r,z)  in 
the Complex a-Plane 
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(a)      THE ORIGINAL THREE   MEDIUM   PROBLEM 

WITHOUT   SOURCES 

(b)      THE   EQUIVALENT   TWO   MEDIUM   PROBLEM 

WITH   POLARIZATION   CURRENT   SOURCES 

Figure 2.2   Alternative, Equivalent Problem Representations 

.' . .._«_ 
—-"-    • •  
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V x H =  i wn?e E (2.12) 
2 0 

In  (2.11) we add and subtract    jw n?e E,    then (2.11)  becomes 

V x H = i w (n2 - n2) E E + i wry: E (2.13) 

We now identify the first-term on the RHS of (2.13) as the equivalent 

polarization current density    J  ,    thus 

Jp = iw(n2-n2) toE (2.14) 

and (2.13)  is now 

V x H = J    + iwn^E (2.15) 

Comparison of (2.15) with (2.12) shows that we may now characterize 

the fields below the dielectric interface through the use of (2.15) alone, 

as long as we keep in mind that the equivalent polarization currents exist 

only within the region occupied by the channel guide. Since the only 

refractive index that appears explicitly in (2.15) is rt«i our Problem is 

seen to be equivalent to that of a two-medium interface problem with 

sources as illustrated in Figure 2.2b. 

It should be emphasized again that to solve the problem discussed 

herein we assume that the fields f  and H  in the channel guide are 
oo 

known, and the implication of this assumption in the present discussion is 

that   J     will  be given explicitly as 

Jp = iw(n2 - n2)eoEo (2.16) 

We have thus converted information about known channel fields into a known 

distribution of equivalent current sources. Since E will in general be 

.--. i 
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capable of resolution along each of the three mutually perpendicular axes 

of the local  coordinate system (cf.  Figure 1.2)  (2.16)  reveals that we 

will   in general  have polarization currents directed along all  three of the 

local  coordinate axes.    The remainder of this chapter is devotee to finding 

the field transform amplitudes associated with each unique component of tr.e 

polarization currents.    The total  electric and magnetic fields outside tne 

channel will  ultimately be constructed via superposition of the results 

obtained for the special  cases to be considered currently. 

2.3.2    z-3irected Phased Arrays of Polarization Currents 

We consider a    z-directed, phased array of polarization currents 

located at a radius    r'    from the    z-axis and a distance    z'  below the 

dielectric interface as illustrated in Figure 2.3.    Analytically, polar.- 

zation line current densities of unit amplitude along the z-direction are 

given by 

Jp =äz5(z-z')Mr-r')e_iv$ (2.17) 

hence reference to (2.16) gives 

Jp = iw(n
2-n2)coEoz5pdr'dz' (2.18) 

To facilitate the analysis of this section we shall  consider a 

z-directed electric type Hertzian potential of the form 
00 

l\e(rt<p,z) = a2e"1v<{) j   6®(a,z)Jv(kom)ada, 

o 
so that 

00 

n!(r,2]  •   I   n!(a,z)J  (k ra)ada (2.19a) 
Z j Z V     0 

0 

_^_ ••   '  J^m***s***iäL^m±*mlä*^a^l*L11±^^    ....  
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Figure 2.3   A z-Directed Phased Array of Polarization Currents 
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and 

(2.19b) fi®(a,z)  - k2  I r^(r,z)Jv(kor,)rdr 

o 

In this section we will  De dealing with the cartesian component of the 

electric field only,  because    H    = 0    for a z-directed Hertzian potential. 

The Hertzian potential satisfies the inhomogeneous wave equation 

(cf. [8]) 

(V2 + k2 9)K
e 

-j 

1 ?'" "     2 
iwt n, 

o 2 

where k, 0  = n, 0k , thus using (2.17) in (2.20) 

(2.20) 

(V2 + k2
>2)^(r,z) = ( ^-7)6(z-z')6(r-r') 

i w c n0 o I 

(2.21) 

Substitution of (2.19a)  into (2.21) and use of the Fourier-ßessel 

representation of   6(r-r') yields 

) . -k2r' 

~S '  k0Ul,2KLz(a'z) = [.~^2]Jv(kor'a)6(z"Z,) (2>22) 

* 0 2 

9    2 
where, as in (2.8) and (2.9), u, 2 

= (a" - ni o)    ' 

Following the same line of reasoning as in Section 2.2, we have the 

following solutions for 5®{a,z) from (2.22): 

"k uiz 

n*(a,z) « A(a)e   °        ,     z > 0 (2.23a) 

-k   U   Z k
n

U?Z 

n*(a,z) = B (a)e    0Z    + Bn(a)e °      ,    z'<z<0      (2.23b) 

n,(a,z) • C(a)e 
koU2Z 

z < z' (2.23c) 

BMBMHH 
MMAriftteHMMMlai^riiMttaMMidaMAi •-•-   — i 
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AQ  solve for the transform coefficients A(a), B (a), B (a}, ana 

C(a) via application of source conditions at z =  z' (two equations) anG 

boundary conditions at z = 0 (two equations); this yields 

2 .     .2      , 2 u,n0 + u0n,    / iu~ we  n„ 
(2.24a) 

k J ,(k r'cx)r'      k u„z' 
B.(a) -    0V    °    2 e02 

i2u0we  n„ 
2      o 2 

(2.24b) 

2 2 
k J  (k r'a)r'     f u„n, -u,n„ )    k u0z' 

i2u0we n0 / u0n, + n, u0 J 
2      o 2 *•   Z 1       12 

(2.24c) 

k J,(k r'a)r'    f -k a»z'      u0n, - u,n„       k o 1 
C(a) •        °V    °    , e    °2    +     2 I      ]  I      *°2 (2.24c) 

i2u0 we.nl; [ u2n, + u.n2 j 
'2"&o"2 

We can now use (2.24a) through (2.24d) in (2.23a) through (2.23c) in 

order to produce the following expressions for the potential transforms 

k J    k r'a r' f 2u„n, z e(    -,\  -        o v    o J       2 2 
II   (a,ZJ  -       2  \ 2 2 

i2u2we n„ (u^np + u^n^ 

kQ(u2z'-u1z) 

z > 0 (2.25a! 

nf(a,z) 
i2u0w e n0 j 2     o 2 i 

2 2 
u2n1 - i^n,      kou2(z+z') 

2 2    e 

u2nl+uln2 

z < 0 (2.25b) 

~— •   - - ^ -, • riTii 
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Substitution of (2.25a) and (2.25b) into (2.19a) produces the aesirec 

integral representations for the Hertzian potential in the covering region 

(z > 0) and the substrate region (z < 0): 

r°° Ur- k  (u9z'-u-z)     . 
nj(r.z)  - -kor'  j   (~T-r;^)Jv(Kor'a)üv(kor.)e < 

u,n0 + u0n, o      12        2 1 
u, 

z > 0 •,2.26a) 

2        o 

< e +    p K i   e i 

; I Lvi+v2J 

J  (k r'«)J  (k ra)^    ,    2 < 0    (2.26b) 
V      O V      O Up ~ 

wu 
0 Q   ,    the intrinsic wave impedance of free-space, 

o 
where we have used 

Proceeding as was done to extend the range of integration of (2.2)  to 

yield (2.10), we may extend the range of integration in (2.26a) and (2.26b) 

to give 

_e -'••0*" 

•^'z)- ~?~iJ^4T^r\ «S'VW* 
k (u0z'-u,z) 

ov  2        I 

°oe 

aäa 
U~ 

z > 0 :2.27a) 

nj(r,z) = —2_ o 21 o 2V 

4n^ £-iu 2       °°e 

•k.u^iz-z'l       u2n,-u.n2 k^u0(z+z') 
+ Y~      T 

u~n, + u,n« 

:v< a da c^w^sf •   z-° (2.27b) 

— •-        • ^^tte^UM      - 
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2.3.3    r-Directed Phased Arrays of Polarization Currents 

We consider an r-directed phased array of polarization currents located 

at a radius r1  from the z-axis and at a distance z1  below the dielectric 

interface as illustrated in Figure 2.4.    Figure 2.4b is a cross-sactional 

view while Figure 2.4a is a  view as seen from the covering medium looking 

down on the z-axis. 

Analytically, the polarization current sources of unit amplitude are 

given by 

(2.28) 

hence 

3    • ¥  5 (z-z')6 (r-r')e~1v? 

p       r 

J    = iw(n2-n^)e E    3 dr'dz' p v        2'  o or p (2.29) p       "'"'      c  o or p 

The approach taken in this section is to consider directly the 

cartesian components of the electric ana magnetic fields.    We have seen 

in Section 2.2 that    E      and    H      satisfy the Helmholtz equation in source- 

free regions and thus that their associated field (Fourier-Bessel)  trans- 

forms satisfy equations  (2.5),   (2.6), and (2.7).    In light of the results 

in Section 2.3.2, we will  hypothesize from the start the following forms 

for the field transforms 

-k   (u,Z-U0z') 
<J> *   (a,z) = A '   (a)e , z > 0 

se.n.,    ,,      Re,m,   ,  kou2(z+z,)   . Mt^**•^ •r'  (a,z) = B      (a)e + Bnr (a)e 

(2.30a) 

z'  < z < 0 

•J'm(a.z) - C^m(a)ek°U2Z  , z < z' 

(2.30b) 

(2.30c) 

where we will make the associations ^ A E  and <i>• 2 H , r-.d the subscript 
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Figure 2.4   An r-Directed Phased Array of Polarization Currents 
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r    indicates that these are field transforms associated with r-directed 

polarization currents. 

In order to compute the eight, as yet unknown coefficients of the 

field transforms in (2.30a) through (2.30c), we must determine ana apply 

the boundary and source conditions applicable to <*>  and 0 . This process 

is presented in detail in Appendix A and yields: 

2iu ,m 

nr 

Ae = 

ul  + u2 
B" pr 

U2"UL-    Bm 

U2 + Ul 

2u2n^ 

pr 

nr 

2A     „2 u?n, + u,n„ 

2 2 
WV2 

2 2 u~n,  + u,n„ 

(2.31a) 

(2.31b) 

(2.31c) 

(2.31d) 

where    B 
m 
pr 

°t- 
and    B 

pr 

pr 

B pr 

u2 - u, 

uT + u2 

2 2 
WV2 

2 2 
u?n, + u,n„ 

are given by 

2 

k u„z'      -k u„z 
„ O 2        „    0 2 e - e 

k u_z'      -k u„z' 
e° 2    . e    o2 

iyR k' 
o o 

2u„ 

ar'c kc 

^oo 

i2n< 

J  (kar1) 
V     0 

vv o      ' 

pr 

pr 

(2.31e) 

(2.31f) 

(2.32a) 

(2.32b) 

Substitution of (2.31a)  through (2.31f)  into (2.30a) through (2.30c) 

yields the following forms for the field transforms: 

        • —• ähtüL -*••-* •      
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*;<«.*>•£ 
2u2n2 

2  .        2 u„n, + u.n. 

-k (u.z-iuz1) 
e    °    1      2      ,    z>0 

:e,      .      ,e    [ u
2

n? ~ uln2    V2
(z+Z,) 

u0n,  t u- n„ 2  1 i   2 

+ sgn[(z-z')]e 
•kou2iz-z' 

z < 0 

(2.33a; 

(2.33b) 

and 

;B,      *      -,m 
rv       '        pr      ui+u2 

2u2        -kQ(u1z-u2z') 
z > 0 (2.34a) 

rx pr j u~ + u. 

z-z' 

(2.34b] 
z < 0 

where sgn[(z-z')]  in (2.33b)  is the numerical  sign of (z-z'). 

With the field transforms thus specified, we may employ (2.10) 

directly in order to generate the desired integral  representations for 

the cartesian components of the electric and magnetic fields in the 

.(2), 

covering and substrate regions, hence 

• !<r,2] =    °Y        I        J'(kar')ri^(kar) 

Lu0n, + u,n^ J 

«e 

•ko(Ulz-u2z')       - 
a aa  » z > 0 

'2"1     ul"2 

k r r' 
*!(r.z)  •      ° ° 0'(k ar')H

(2)(k ar) 
i4n2        J^-nr        v    o v        o 

u?n,  - u,n        k u?(z+z') -ku?|Z-z';7 
- ° 2 + sgn[(z-z')]e   ° 2 

u2nl  + uln2 J 
z > 0 

2 

(2.35a) 

(2.35b) 

. -  i .t—   —.  .  
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2     °° 

*>,*) -   -V"9- f     Vko r')h (koar) 

2u9        -k u~(z-z') , 
e    ° 2 ^    ,        z> 0 (2.36a) 

Ul+U2 

i v R  k °° 
• J(r.l) -    —P-    f Jv(KQar')H(2)(koar) 

OOQ 

fu0-u,      ku0(z+z')        -ku-lz-z'l)   nA 
^J-e02 + e   °2 |«fe.      ,£0 (2.36b) 

where (2.35a),  (2.35b),  (2.36a), and (2.36b)    are integratec along the 

contour shown in Figure 2.1. 

Finally, with reference to (2.27a) and (2.27b), we see that 

(2.35a) and (2.35b)  can be related to   :^(r,z)    by 

2 
*?(r,z) = r' -2    X n?(r,z) (2.37) 

r 3r'3z'     r        Z 

2.3.4 ^-Directed Phased Arrays of Polarization Current 

As per Section 2.3.3, we consider the cartesian components 

| A Ez and » 4 w^   0f the electric and magnetic fields in the cover- 

ing and substrate media. The procedure for finding integral represen- 

tations of these cartesian field components is very similar to that 

followed above. Indeed, the only formal difference between the case 

currently under consideration and that of the r-directed polarization 

currents is that the unit vector in the representation of the polarization 

current densities changes from a  to a , with the result that (A.3c) 

and (A.3d) [cf. Appendix A] are replaced, respectively, by 

 •-  -- - - •r^JUM—hm i   - — 



27 

(b) 

Figure 2.6   A ^-Directed Pgased Array of Polarization Currents 
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3  im«      \' 
87 Va'z); 81 \(a'z) 

iz=z' + 

k° r'J'   (k ctr' o       v  v o 
'2 = Z' 

(2.38a) 

*J(a,z' + )  - *®(a,z'-) 
vk 

o 2 
72    Wr'> (2.38b) 

Comparing  (2.38a) with (A.3c)  (recalling v = yk R )    we see 

-ivR k3J  (k ar') -> k3ar'J'(k ar') 
' O O V  O        0    V  0 

:2.39; 

and comparison of (2.38b) with (A.3d) shows that 

k2 Z  ar' R k2c 
-5?—9   J'(k ar') *y   ° ° °   J (k ar1) 2     vx o        2      vv o in. n. 

(2.40) 

'2 "2 

The changes indicated in (2.39) and (2.40) manifest themselves in the 

values of Bm  and Be . Thus, (2.32a) and (2.32b) are replaced by 

pg 

2 
•k ar 

•%  J'(kar') 
2up   v   o 

YR k2; 
Be = 

Y_oop_ j (fc  ,j 
P0    2n2    v o 

(2.41a) 

(2.41b) 

For the case of y-directed polarization currents, equations (2.33a), 

(2.33b) and (2.34a), (2.34b) are reproduced except that the subscript r 

is replaced by the subscript f . Using (2.33a) through (2.34b) modified 

for $-directed currents in (2.10) we have 

  *—**-•      —  n ii i njaüJi 
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tJCr.1) - 

2u0n0 

YRC k 1      r\ J r\ r 
-2^2 J  (k ar')H(2)(k of) 

*4   Uru Vx   0 V 

2~       2 
tun, + u-^ 

-k (tui-a-z1) 
e    °    '      c ada , z > 0 

•J(r.x) « 
YR„C  k 2 

4n2       J  -1« 2       °°e 

J  (k ar'lH^'ikar) 

u9n,-u,n,,       k u (z+z') -k uJz-z' 
-l-\ L|     e ° 2 + sgnL(z-z')]e   ° 2 

u-n, + u,n2 

ada   , 

z < 0 

2 
-kfp' 

J     -ITT 

2u0 •ku,(z-z']       2, 2 o 2 a da 
e 

VU2 Li. 
z > 0 

-k2r' 

J . 
00£ •ITT 

J'(koar')H^2)(k0ar) 

2 
-,da u2 ' Ul    kou

2
(z+z,)  +    -kou2,z-z,|l 

u2 + Ul  6 j       U2 

z < 0 

(2.42a) 

(2.42b) 

(2.42c) 

(2.42(1) 

Upon comparison of (2.42a) and (2.42c) with (2.27a) and (2.27b), 

respectively, we see 

iyR-k. 

•;«'•«> • -^ ?!• !"<r-2» 
(2.43) 

Finally, comparison of (2.42c) and (2.42d) with (2.36a) and (2.36b), 

respectively, yields 

#'•«>•   i^fr   rfrifCwJ (2.44) 

 „ |N^iMy|gaatt 
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2.3.5    The Ancillary Potential   Integrals    V  , V — •* a—  e     in 

In terms of the Hertzian potentia i it of Section 2.3.2, we can 

write the associated cartesian component of the electric field *  as 

oZ 
(2.45) 

Now, considering (2.27a) and (2.27b) we define the scalar, electric, 

ancillary potential    V      by 

V>,z) =  (—| K . f J  (k r'a)H^(k ra) 
*»|  i,-«.v' °    '"    ° 

2 
2upn? k (iuz'-u,z)      j o    2        1        ada 

2 2 ulVu2nl 
z > 0 (2.46a) 

-i 
Ve(r,z) "0      r 

4n~    J  -i- 2   °°e 

Jv(k0r
,o)Htf

(2,(k0m) 

"u2nl  '  üln2      koU2(2+Z,) 4     -
kou2iz"Z' 

—T~ 2    e + e 

,u2n1 + u]n2 

a da z < 0 (2.46b) 

(2.47a) 

Having thus aefined    V ,    we see that 

*!(r,z) - r'M* + k? 2]v (r,z) z |3z^        \,£j   e 

In a like manner, considering (2.46a) and (2.46b) along witn (2.35a) 

and (2.35b), we have 

;(r,z) - r' 
3r'oz' 

Ve(r,z) (2.47b) 

Consider now the definition of the scalar, magnetic, ancillary 

potential V  given as m 

...... -, .  .-^ „<_  ._.. , —,. •• ...i«» • -    . -nMfcfOfc... 
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V  (r.z)  •  (-£) J  (k r'u)H(2)(kra) m 4 ^    \i    o v    x  o 
'     -171 

2u, •ko(ulz-u2Z,)      ada 

Vu2 
z > 0 (2.48a) 

Vm(r,z)  -   (f)   j        Vk0r'   )H^ V  > 

f u2"Ui      k0
u2(z+z,)        "koU2 i2-z'i 

e + e u2+u1 

ada 
U/s 

2   < 0 :2.48b) 

Comparison of (2.48a) and (2.48b) with (2.36a) and (2.36b) gives 

v   (r,z)  =  (iyR k  )Vm r '      o o   HI 
(2.45c, 

and a similar comparison of (2.48a) ana  (2.48b) with (2.42c) ana  (2.42c) 

yields 

We can conveniently summarize the representation of the total 

e rn 
cartesian field components    *      and    $      due to polarization currents in 

the channel  region in terms of the potentials    V     and    V  ,    i.e.,  since 

.e _  .e . Ae .   .e 
z r        d> 

,m     ^m ,  ^m 
and     0    = <i>   + $. 

r       <p 

we can write 

* 

(r,z) 

m 
(r,z) 

,- 31 
r' 

= iwe  (n -n2)     j   dS' 

Guide 
Cross 

Section 

3r'3z' 

iyR k V o o m 

-A '   0   0      oZJ 

-r'   -=r> V r    3r'    m 

i t. 
"0>? 

[>j 
(2.49) 

    — -'---     -- •/ ••- >•* :-a«g.>i^.    ,,>«••. 



32 

CHAPTER 3 

ASYMPTOTIC EVALUATION 0<=  THE A\CILLARY 

POTENTIAL V 
e 

3.1 Introduction 

The developments in Chapter 2 have led to a representation of the 

Cartesian field components exterior to the curved channel waveguide in 

terms of the fields of the straight channel waveguide ana tne ancillary 

electric and magnetic potentials V  and V , respectively. In this 

chapter we will concentrate upon determining an analytical expression 

for V  that is more useful in practical applications than is tne forr.il 

representation in equations (2.46a), (2.46b). The ancillary potential V 
n 

will be discussed only to a limited extent since the analytical procedure 

employed to simplify V  can be applied without modification to V . 

The analytical approach to finaing a more useful representation for 

V  and V  begins with application of the Debye expansions for Bessel 

and Hankel functions of large order and argument to the integrands of 

(2.46a), (2.46b) and (2.48a), (2.48b). Once accomplished, this step is 

seen to facilitate an asymptotic analysis of the modified integrals. In 

particular, a steepest descent evaluation is pursued for V  which 

yields a first order representation when k R >> 1. oo 
In Chapter 4, the asymptotic expression derived for V      is usea to e 

compute the attenuation constant due to continuous radiation loss from 

a bent rectangular waveguide after assuming a specific form for the straight 

guide modes. 

 J.-^»^ —. ^.. —...—^^- 



—^^^*»^P"*BI 

33 

3-2 MOQ meat Ion of the Integral Representations of V , V 

3.2.1 Changing the Contour of Integration 

As we have noted previously, the contour over which the integra". 

representations of V  and V  are integrated is tnat illustrated in 

Figure 2.1. We now consider the closeG contour 7  shown in Figure 3.', 
c 

which is composed of the contour v  which lies along the Re i axis 

as well as the contours y-,, yn,  vn , YD , yD 
1     C J 

'ne contours Y, anc 

Y? lie along the branch cuts associatec witn n, and n_, respectively, 

and contours yD , yD  ,  and yD  lie on tne radius of a serr.i-circ'.e of 
Kl  K2     K3 

radius R. We will eventually consider r  as R * », whereupor 

will coincide with our original contour of integration for V 

For the moment, however consider the integrals 

inc 

lr  • i F(a) e ° Z    ' do , 

lL- G(cx)e 
kou2(z+z') 

+ H(a)e 

z > 0 

-k0u2iz-z': 
da ,  z < 0 

where F(a), G(a), and H(a) are analytic everywhere within and on 

(3.1«) 

(3.1 B) 

and 

tend uniformly to zero as R-+°°.    Since there are no singularities of the 

integrand contained within  r ,  the residue theorem assures that    I~= I," 0, 

so (3.1a) and (3.1b) give,  respectively, 

(F) 
J 
Yl 

(F) (F)   - (F) 

"Yo 
2   f    

YRi+VYR3 
(G.H)  - - j(G,H)  - j   (G,H)  -     f    (G,H) 

) Yl Y2 yR +y    fY 
1    R2    R3 

(3.2a) 

(3.2b) 
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+ X-R| 
+ XR2

+XR3 

Im a 

Re  a 

Figure 3.1    The Contour r 
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where we h-ve syniDolized the integrana of (5.1a)  by (F) and the integranc 

of  (3.1b)  by  (G,H). 

If now we let R + M, we may invoke JorGan's  lemma to justify the 

claim that botn   '   (F) and !6,H) 

I  2  3 

vanish (recall z' <   0) 

Also, the uniform tendency toward zero of F(a), 6(a), and H(a) together 

with the exponential factors in (F) and (G,h) assure the convergence of 

the remaining integrals, whence (3.2a) and (3.2b) become 

f 
J 

COQ 

(F) = - j  (F) - j (F) to   n- \ 
VO.da ) 

ooe u (G,ri) • -   (G.H) -    (G,H) 
J        J 
Y]        Y2 

(3.3b) 

where   y.    and   y?    are now contours which "wrap-around" the full extent 

of their associated branch cuts. 

Notice that both    V      and    V    take the form of (3.3a)  for    z > 0, em — 

and that both    V      and    V      take the form of (3.3b)  for    z < 0.    Thus, em — 
we can now transfer our attention from an integration of the ancillary 

potentials    V     and    V     along the    Re a   axis to a pair of integrals 

which,  in each case,  follow the branch cuts of    u,    and    u?    in the lower 

half of the i-plane. 

3.2.2   Application of the Debye Expansions 

Our objective in this section is to find an asymptotic representation 
(2) 

for the product    J (k r'a)Hv   '(k ra)    which appears in the integrands r v    o v       o 

lilltlh ioumtaim --'•——•    -        • ni IM *   - 
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of the- integral  representations of   V      and    V  .    Since we are interested 

in geometries for which    k R    >> 1,    and since   v = yk R  , we are certa'nly 3 oo o c 

dealing with Bessel  and Hankel   functions of large order.    Likewise, since 

we are interested in fields just beyond the outer radius of the channel 

guide, both    r'    and    r   are on the order of    R  ;    so,  for   a    cf suffi- 

ciently large modulus, the 3essel and nankel  functions we encounter are 

of large argument as well.    The requirement that   a    be of sufficient 

modulus means that there is a region aDout the origin of tne a-plane 

of radius    0{-,—5-)    within which we cannot allow our integration contour 
0 0 

to pass.    This presents no significant difficulty since we are free to 

deform the contours    y,    and   y-    onto the improper Riemann sheet  (if 

necessary)  for a finite distance and hence to circumvent the forbidden 

region, whereupon we re-enter the proper sheet and continue integrating 

along the branch cuts.    We will  not consider this subtlety in greater 

depth since we will  ultimately prosecute a saddle point evaluation of 

our integrals for which the saddle point is well  removed from regions 

where the large argument assumption is invalid. 

The Debye asymptotic expansions for large order and argument may 

be written in the form (cf.[5], [9]) 

(2*v)V (vz)Ml-z2fVvf(z> 

(2nv)\(vz) % -2(l-z2)"Vf(z) 

where 0 < Re z < 1, and 

f(z)  •tanlTKl-l'r - (1-z ) 2^ 

(3.4a) 

(3.4b) 

(3.4c) 

and where Y  is the Neumann function of order v v 



Since rt[V>  = J - iY , (3.4a) and (3.4b) give 

2^ 
H(2)(vz)xiiü^l) 6Vf(2) _ 1 e-vfU) (3.5) 

If we let vz = k a(R + y)> then 

2 - * (1 * f > ft. 
(3.6) 

and 

2 A zi   * 9L 
0 =        Y 

ly*0 

(3.7) 

Recall that y is the radial coordinate of the local coordinate system 

situated at the center of the channel guide (cf. Figure 1.2). In an 

integrated optics environment we will have n > y >  rU' tnuS "inspection 

of the contour  y? reveals that Re(—) < 1 for all a on Y2- 

A Taylor series expansion of (3.4c) in powers of y about z     as 

given in (3.7) yields the result 

2 "i 

lf(l) « k^Yf^-ykYll-aj) 
r Y 

(3.8) 

Using (3.8) in (3.5) gives 

H^2)(vz) % 12 
2* 

(2rtv) 2   /   Ro 
2 >s 

k R f(*) -k Ayd-4)15  i -YkoV^ V*^ 1 
;e °"° "Y' e ° 2e 

) 

(3.9) 

to 0(1) 
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* S  (y2 - a2) (3.1Oa) 

and 

F(x) Ü Yf(^) - Y tanh '£) - x , 0.  II/J, 

(3.9)  gives  (recall    k R    »1) 
o o 

H(2)(k ar) -k Ay -2k R F(\) 
vo_^e   o     _ ie     oo        sinh (       } 

H^2)(k ctR   ) ° v    v  o    o' 
(3.10c) 

where we have also used    r • R    + y. o     * 

Using (3.4a) with (3.6),  (3.7), and (3.8), we find 

2 2 -\ 
n-^rO+f) ] 

J (kar)<* —* ?  
V    ° (ZirvP 

2 k 

V^1-^)    ^koRof^ Y     e o o V 

to O(-).  Employing (3.11) we find directly 

(3.11) 

J (k ar) 
\>    o 

vK  o o' 
% e 

koxy 

Also, using (3.9) and (3.11) we have 

(3.12) 

(3.13) 

We now have each of the elemental results necessary for finding 

an asymptotic representation for JN)(krtar' )H\*'flt^J. From (3.10c) and 

(3.12) we have 

v o 
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y'k X 
J  (k ar')H(2)(k ar) % J  (k aR )H(2,(k aRje     ° 

\>   o v' o   o   v    v o   o 

'  -k Ay -2k R F(X) 
e    °      - i e     ° ° sinh(kQAy) (3.14) 

Finally, substitution of (3.13)  in (3.14) yields our objective, 

J  (k cxr')H(2)(k ar) -v. -A- v    o v    x  o fik_R_   ] A 

-k  X(y-y' 
1 0     J   ' e 

o o 

where terms of 0 (e 
-4k R F(A) 

+ 2A e 

o o ) have been neglected. 

(3.15) 

3.2.3 The Modified Integral Representations of V , V 

Using results (3.3a), (3.3b) and (3.15) in (2.46a) and (2.46b) as 

well as (2.48a) and (2.48b), the ancillary potentials V  and H      seen 

to be separable into primary and secondary components; i.e., we may 

write V = Vp + V* , \L = v£ + V* , where e  e  e   m  m       m 

-£, 1 
vP(y,y',z,z')=(T

0-)   47TkR 
n0 0 0-' 

2 Y 

-kQA(y-y') 
e ada 

u. {-} 

1,2 

v:(y,y',z,z')=(^)3^-  j 
"2 ^1,2 

kMy+y') -2k0R0F(x) 
e e ada 

u, 

i^y,y ,z'z  ;      v4rrR      J 

-k0A(y+y') 
e gdg 

A u0 
{-} 

(3.16a) 

{-}(3.16b) 

(3.16c) 

'1,2 

m(y,y\z,z') - U~) e e -—  ( - j (j.löQ/ 

1,2 

-      ^WiriBi 
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For convenience we have omitted detailed representation of those 

portions of the integrands which remain unchanged as the result of apply- 

ing the Debye expansions. Classification of terms as primary or secondary 

components is made on the basic of the fact that in the limit as R ->- », 
o 

R Vp and R Vp approach the forms assumed by the ancillary potentials 
o e     o m 

in the straight guide case. Because of the presence of the factor 
-2k R FU) 

o o , choice of the proper branch of A will in general viel a 

Vs «Vp and Vs «Vp; indeed, both R Vs and R Vs vanish as R -> » . ee     mm oe     om o 
Despite the fact that the secondary ancillary potentials are much 

s     s 
smaller in magnitude than their primary counterparts, V  and V  are 

the terms of interest for our purposes here. This follows from the 

fact that, in addition to their relatively small magnitudes when compared 

to the primary potentials, both V^ and V  exhibit an exponentially 

increasing character for increasing y, and each stands in quadrature 

to its associated primary potential. These features of V^ and V 

allow an association between these secondary potentials and the electric 

and magnetic fields exterior to the bent Channelguide which have been 

reflected from the caustic; i.e., the electric and magnetic fields 

derivable from the secondary, ancillary potentials V^ and V  are 

the fields 6E and <5H, respectively. 

We will henceforth focus attention on the ancillary potentials V 

of (3.16b) and V of (3.16d) in order to characterize the radiation 

from the bent channel guide. Because of the linearity of all operators 

involved, equation (2.49) still applies and the components produced are 

the z-components of <sE and 6H. 

- kMktt «iu 
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3.3 The Asymptotic Form of V 

3.3.1 A Change of Variables 

To assure convergence of our fundamental integral representations of 

2        2 H V      and    V  ,    we have chosen to employ the branches of    u,   =  (a    - n,\ 
em II 

2        2  2 

and    u    =  (a    - n?)      for which    Re u.  > G,    Re u„ > 0.    It is in connec- 

tion with these branches of    u,    and    u-    that the branch Cuts at    n,    and 

n„    arise in the c-plane.    The contours    y,    and   y9    follow the :>rdr,cn 

cuts at    n,    and    n?,  respectively, and it follows from the same analysis 

that specifies the branch cuts (not discussed herein)  tnat    u,    is purely 

imaginary along   y.    and    u„    is purely imaginary along    X?.    Indeed,  if 

we consider   y?    to be composed of segments   y?„, 9?, Y?    (i.e., 

Y2 = y2i + 92 + Y2 '    it is possible to show that    arg u« * - ^   on   r^ 

and arg IU s -A   on   Yp    (cf-   Figure 3.2).    The segment    g?    is a circular 

segment centered on    n?   whose radius we allow to vanish, whereupon we find 

no contribution from    g„    to the integrals over   y„    in  (3.16b)  and  (3.16d). 

Analogous statements follow for the argument of    u,    on   Y,,    with 

y    = y,„ + 9-) + Y-   >    and for the contribution from    g,    to the integrals 

over   y,     in    (3.16b)  and (3.16d). 

2        2 ^ 
Analysis shows that we may select a branch of the function (n9 - a, } 

2       2 ^ 
consistent with the extant branch cut at    n„    such that    In^n- - a ) <    0, 

thus we may write 

Up =  i s2 (3.17a) 

where 

2        2 s2 •  (n2 - a ] Im(n| - a2)    < 0 (3.17b) 

*. 
r m* i  ••^dfrÜM^Srt-Ji i  • i 
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Im a a - PLANE 

arg u« - v /Z ,   s2 >0 

Re a 

rZ1
+q2+r

Z 

7T/2,    S2  <0 

Figure 3.2    A Close-Up of Contour y,. 

-      -"—-**-i-**+-~.     ... --•:.-~jfc^&*J.—^».., _-,.._-• .     . 
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Since u2 is purely imaginary along Y*. and Y2 » then s~ must be 

purely real along these same segments. Indeed, the nature of u? along 

Ygo and You along with (3.17a) requires s2 real and s2 < 0 on 

Y2n and s2 real and s~ > 0 along Y2 Ccf. Figure 3.2). Thus, a change 

of variables from a to  s2 in (3.16b) and (3.16d) using (3.17a) will 

convert integrals along y? in the a-plane to integrals along the full 

extent of the real axis (-» to +») in the s2-plane. In the sarr.e way, 

one may write 

where 

ul = 1 sl 

S. = (n^ - or) ,   Im(n^ - a ) < 0 

(3.18a) 

(3.18b) 

as a change of variables from a to s, in (3.16b) and (3.16d) to convert 

integrals over y-i in the a-plane to integrals over  the full extent of 

the real axis in the s^-plane. 

For the purpose of illustration, wa will consider that portion of 

V  obtained from integration over the contour y0> while noting that an 
e c 

analogous procedure may be performed for that portiom of v  obtained 

from integration over y,.    At the end of this chapter we will see, in 

fact, that the contribution to v| due to the integration over y}   can 

be neglected because of its insignificant amplitude relative to the con- 

tribution arising from the integration over Y2- 

From (3.17a) and (3.17b) we have ^ = -ia(a2 - n2) , so 

ds. ctda (3.19) 

MM  
"—*•—"'-" -"  .«ill • ir ii in i • -- •-•-*.-~/-^--^..^ 
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Recalling A from (3.10a) and using (3.17a) and (3.17b), we may write 

h 

where 

Also, we may write 

A =  [\\ + s|) 

i2 - J       2 
A2 - Y    - n2 

2        2 ' 
Ul  =  (V2 " S2) 

(3.20a) 

(3.20b) 

(3.21a) 

where 

2        2        2 v0 = nQ - n, £        2        1 
(3.21b) 

Using  (3.19),  (3.20a),  (3.20b),  (3.21a), and (3.21b)  in (3.16b), we have 

k R q?(s?) , o o ^    ', v'(y,y',z,2') = (—^—) f T (y,y',z,z';sje 
e 8irn,k R      J     e z 

2   0   0    -oo 

ds2 (3.22a) 

where 

Te(y,y',z,z';s2) 
V^y,) 2u^ ^0(V-y,l) 

kQA(y+y') 

2        2 
Uln2+Li2nl 

> 0 (3.22b) 

Te(y,y',z,z';s2) • =—- 
u£n1  - u^      kou2(z+z') 

2 2   e 

uln2 + u2nl 

-k0u2jz-z' 
+ e 

where    i^ = is2,    u-,  = (v« - s\)  ,    and 

z i < 0 

q2(s2) • 2 |* log ^   • xj  , A  =   (X| + S|J 

(3.22c) 

(3.22d) 

aMaagHlliakaa^i 
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3.3.2   Evaluation of   V; 

Since we assume    k R    » 1,  the form of   V^    given in (3.22a)  lends  itself 

readily to a steepest descent type of asymptotic evaluation (cf.  [7]). 

Proceeding as outlined in AppendiA B we find 

V^(y,y',z,z') * 
\ 
3/2 

koRoq2(0) 

16TT2n?k R     \   "2V*0   / 2  0  0     \ / 

y2(y+r) [ 
k z'  - 

o 
"1  

n^tn2 - n2)^ 

r n 
k z - 

o 

1 
7    2 2 ^5 

n2(n2 - n-j) 

J 

(3.23) 

A similar result is obtained for the component of    V*    derived by 

integration over   y-i •    However, consider the series representation of 

q,(0)    and   q~(0)    derived by expanding their logarithmic terms [cf.  (3.22d)J 

°°      , X. 2ii+l 

M0> • -* \cdtr {f> (3.24) 

where X n2    ^ 

(v)= 0 - -H   '    i = 1'2 • Y Y 
2 x 

For    qi(0),    (-J-)    «1,      so    Hj?-)  -    1   , 

n? 2 A 
whereas for   q2(0),    (—••)    ~ 1,    so    0 < (—) « 1.    For typical  integrated 

optics material parameters then,  (3.24) gives    |q-,(0)| >> | q2(0)}  so that 

koRoql(0) Voq2{0) 
e « e and we are justified in neglecting the contri- 

bution from the integration over contour   y.. 
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CHAPTER 4 

RADIATION LOSS FROM A CURVED RECTANGULAR 

CHANNEL GUIDE FAR FROM CUTOFF 

4.1 Introduction 

As discussed briefly in Chapter 1, we will know the continuous 

radiation loss from a section of curved dielectric channel waveguide 

once we have found the normalized attenuation constant a as given by (1.2] 

Evaluation of a requires computation of the quantities P and c in 

(1.3) and (7.4), respectively. Our efforts in Chapters 2 and 3 have 

been to derive an expression from which we can determine the caustic- 

reflected fields 6E and 6H in terms of the straight channel fields. 

Equations (2.49) and (3.23) allow us now to do so. Thus, we are left 

with the task of specifying the straight channel fields E. H for any 

case of practical interest and using these with (2.49), (3.23), (1.2), and 

(1.3) in order to find a. 

The general problem of determining the fields within a straight, 

rectargular dielectric channel waveguide embedded in a substrate has not 

been r.gorously solved analytically. However, an approximate analytical 

method has been developed by Marcatili (cf. [2]) which yields straight 

channel field expressions which are valid for well confined channel modes, 

i.e., channel modes that are far from cutoff. We will employ Marcatili's 

results and thus generate an expression for the radiation from a curved 

dielectric channel waveguide with associated straight channel modes that 

are far from  cutoff. In particular, we consider the straight, rectangular 

*jm*MiL-*< • • • -^IM»^.-.   • .   
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dielectric channel waveguide configuration of Fig.  4.1 whicn illustrates 

the general  disposition of material  regions to which Marcatili's 

analytical  procedure can be applied.    The material  parameters assigned 

to the various regions are consistent with tnose of the associated 

curved channel  guide problem illustrated in Figure 1.2.    Tne assunpticn 

of propagating modes that are far from cutoff and therefore highly con- 

fined witnin the channel  region is extended by the stipulation  chat the 

fields in the shaded regions of Figure 4.1 are negligible,  hence r,o 

material  parameters need be specified there. 

It snouid also be noted that the origin of the (x,w,s)  ccorcinate 

system is off-set from the local  cartesian system (x,y,s)  ir, rigu,~e 1.1. 

To convert to the (x,w,s)  system from the (x,y,s) system we neec only 

employ the transformation 

y=w-| (4.1 

The structure of Figure 4.1 can support a set of modes that are 

predominantly x-polarized and are aesignatea £  modes. In addition, 

such a structure can also support a set of modes that are predominantly 

y-polarized and are designated E^  modes. Although such a structure 

can support both modes, we consider only radiation due to the £  mooes 
Pd 

whose field distributions in the channel guide are given by Marcuse 

(cf. [11]) 

£QS • A cos kx(x -r Ocos kw(w + n) 

ox 

«V  ,2 
it n ko " kx 
ß     k 

En    z  0 
ow 

sin kx(x + Ocos ^(w + n) 

(4.2a) 

(4.2b) 

(4.2c) 

i-*—.-.  „. ^ .... .*. ,. »: ••^-••>*nM— ill 



i i  !»U <«WVMP 

48 

Figure 4.1 The Straight, Rectangular Dielectric Channel 
Waveguide Configuration 

,    ^. •HhMiliMHk^My 
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2    k      k 
• -A(f-)(^)(-#) sin k {x+C)sin k (w + n) 

OS [k • • e o      x 
w 

4.2d] 

H      5 0 ox 

ow 

k n 
iA\r— - }  sin k  Ix 

k ',„ x 
x o 

+ ;')cos  k ,(w + r.) 

;4.2e; 

(4.2f) 

where    k   = w/,. i        is tne free-space phase constant,    &    is the pi - ooo K 

constant of the fields in tne channel   (propagation of the form   e 

is assumed ),    and    c    «  / - o      v t 
0 s tne free-space wave impedance.        6   >ara- 

meters    k     and    k     are separation constants related by 
X w 

2.2      -2      .2  .   .2 
n k0 - 0    = kx + Ky [4.3J 

ana are solutions of the eigenvalue equations 
2        2 n kx(niY2 + n2Y3) 

tan k d - —ö—o—9 .• "~~ 
X        tnfn2kx - n VV 

2KWY, 
tan k b =   —g » 

w f,. Z      2 \ 

I4.4aj 

(4.4b) 

The parameters   Y-    are given by 

2        2    2 2 
Y2 - ßn   - n2)kQ - kx] 

r/  2        2».2      , 2-, 
Y4 " L(n   - n2)kQ - KWJ 

^ 

(4.5a) 

(4.5b) 

(4.5cj 

(3.18a) 

"—*^,-i"tt^-:—: Li,t—-—-••— • ---- •-' — 
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The parameters y. are transverse decay constants of the fields in 

the material regions below, above, ana on either side of the reg'en of 

refractive index n (the channel  guide), respectively; e.g., the fields in 
Y2(x+d) 

the material region below the channel guide region decay like e "    , 

x< -d. It follows that each  of the parameters y. satisfies y, > 0. 
j J 

Once k  and k  are known, the phase parameters 5 and n, are 
X       w 

determined from ~ 
r   k 

tan k C • - (—) — (4.6a) x     n ' y- 
o 

tan kwn - -r ^6i>) 
w 

Also, notice that once k  and k  are known, (4.2) may be solved to 

yield 3- 

4.2 Expressions for P and C 

Application of the assumption of modes far from cutoff ana employing 

the local coordinate representations for the field components allows 

(1.3) and (1.4) to be rewritten, respectively, as 



I ••••••I 

51 

o  b 

P = 2 { dx | dy(EoxHow) 

-d  o 

E" *6H - 6E x R" \ •  a dxl 
0 0 f   w 

(4.7) 

(4.8) 

'W=D 

As discussed in detail in Appendix C, tne straight channel field 

expressions (4.2) my  be used with the ancillary potential V^ from (5.23) 

in (4.7). and (4.8) to evaluate P and C as 

2 2   2   ,2 
p 3 .on

2  o x   o   f-ä + l \(S + L ) v        ZA L  k2   J  3C0  
l 2  LxA2  V (4.9) 

?      2 2        2 
C *     -A'C^J sgn[cos(Kwb)jsgn[kw - Y^J 

2 2        2      2        2 ** 
rkwko'nko - \"n  -";»1 rx .22 .  2, + n2k   -, 

3/2 
Tin., 

o o 2 

(koA2b>/2 .koRoq2(0) 
(4.10) 

where the constants    L , L  , C., and C2    are given in Appendix C as equations 

(C.5a),  (C.5b),  (C.22), and (C.25),  respectively. 

4.3   The Evaluation of a 

The normalized attenuation constant is given in (1.2).    Before evaluating 

a in terms of (4.9) and (4.10),  it is advantageous to normalize    C,, Cj. and 

A
a~   (I + Lv)('l+ L )    t0    krt-    

Doin9 this we have 

Cl  =    „ JfJfrjMl   Ucssn[cos(kQb)v ]sgn[vj - :*J 
ko'2(n "V     ( 
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(kob)X2/2       -(kQb)X2/2 
e - e + r sgn[cos(k0b;vwJ 

sgnlko(vy - r4)] e + e |\ (A.12) 

1 sgn[cos(Kod)vxJ sgni(n^2Y2 

k v   ] 
O   X i 

(n2r2(kod) + n\)       -, 

,42 . JL2\% ,n2vx + n,2)^ 

x 2  3 

J + 
J 2 n n, 

" "27T    ~2T¥ r>2^n2 - n1 J 

, 42   J Ol   +   sgn[cos(k d)v lsgn[k'(n'n^>' - nT/,)] 
l3 + Yx' 

r, 1 

4F7i^j (4.13) 

/ 
I A    -      , 

o   (A 

(kQd) + n 2 r n 2p 
13 

n 

i    , 4 2' " 4„2< L (n,v.. + n I\, 

222 

^lvx + ni3) <4£* "^      Ji 
2I\ 

(n -n2) 
(4.14) 

where 

v.  = K./k 
l        i    o 

ri - Vko 

(4.15a) 

(4.15b) 

With (4.12), (4.13), (4.14) and (4.9), (4.10) in (1.2) we find 

9    9  *"M 

a • -sgn[cos(krtb)v,.,] sgn[vw - T^jr) o~'"w 
(4.16a) 

where 
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.3 i„  \2 
-   r^M   fxJsgn[cos(k b)v  )]sgr;[v2 - r4] 

n2^vxj   L2 

(Kob)A2/2   _ e-(k0b)X2/2) #        (sgn[cos(kob)vw] 

fk  bU /2       -(<< b)X /2 -) r .2      ,2-, .W< + e^o      2    yjjsgnC 
sgn[V - r4] e 

cos(koa)vxJ 

(n2r,U d) - n 
2N 

.222   4   , UI/2^Q-' 
sgn[n1n2vx - n ?2r3l -- 4 2  "rjl (n2^x * n ,2J 

"1       __ 
7TT       4 27* (n rj • n-vx; 

2 2 
n n. + sgn[cos(k0dX>x] 

[X2(n2-v2) + n2r4] [! ^Ä)3/2   J 
o o 

2 r 

v^vb^'v^] 

K d) + n 

n?r3 n2l2 n 

V^-T7^fr + '?FÄr)J 

(4.16b) 

(4.16c) 

and where 

2,-* 
Y0" v\- [n2 • (vx + vy)] 

? 2^ 
X2 S (Y2 - n2) 

(4.17a) 

(4.17b) 
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In order to highlight the dependence of this cumbersome result on 

the radius of curvature of the channel  we sinplify (4.16a)  througn  (4.16c; 

by writing 

a- J-•     e°°2 (4.18) 
v o o 

where    C   (the subscript    i    designating that this result is associatea 

with an "inhomogeneous" medium about the channel  guide)  is a parameter 

dependent upon tne refractive indices of the channel  guide and its surround- 

ing media,  the dimensions of the channel  guide, and tne specific    E     mode 

propagating in the channel. 

Figure 4.2 is a plot of the normalized attenuation coefficient 

versus    k R      for    k d = 5    and    k b = 10.    The refractive index of oo o o 

the channel  guide is assigned to be 4.04,  that of the substrate 4.00, 

and that of the covering medium 1.00. 

4.4    Conclusions 

As mentioned in Secion 1.1,  there are no analytical  reports in the 

literature which address a problem similar enough to that considered 

here to allow comparisons with the force to effectively confirm or 

reject the principal  result derived in this report,  i.e.,  the form of 

the normalized attenuation coefficient   a    presented in Section 4.4. 

To this extent,  then,  the expression for a      in (4.16)  is a new result. 

To appreciate that the form of   a    constitutes a unique as well  as a 

new result, we consider the form of the normalized attenuation coefficient 

a'   (primes do not indicate differentiation here)  for a bent,  rectangular 

dielectric waveguide immersed in a homogeneous medium of lower refractive 

index than that of the guide (cf.   [5], Section 9.6/,  i.e. 
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Figure 4.2   The Normalized Attenuation Coefficient a Versus k R for a Bent, 
Rectangular Channel Guide in a Densp SiihstratP     ° ° 
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a 

<w 
koRoQ(0) 

(4.19) 

where C.  and Q(0), like C. and q2(0) in (4.41), are pararseters 

depending upon material characteristics and the specific mode assumed to 

be propagating in the guide. 

Upon comparison of (4.19) with (4.18), two conclusions are immediate. 

First, even though Q(0) and q«(0) are  not necessarily equal, the form 

of the exponential dependence of a and a' on k R  is tne same. 

Second, the algebraic dependence of a and a' on R  is not tne same, 
3/2 o 

being (jr~jr~)   for a and ("|T~R~)  ^or a'* Certainly, then, fcr a 
oo oo 

pair of bent, rectangular dielectric waveguides, one in a dense substrate 

below a material interface and the other in a homogeneous medium, when 

q2(0) • Q(0), one expects the rate of Gecrease of attenuation with 

increasing k R  to be greater in the case of the guide in the substrate 

below a material interface. In order to understand how the overall atten- 

uation behaves in such situations we consider Figure 4.3, wnich is a plot 

(versus k R ) of the values of the normalized attenuation constant for 
o o 

each of three bent waveguide configurations. 

In case I, the guide has a refractive index n = 4.04, dimensions of 

k d = 3, k b = 10, and is embedded in a homogeneous medium of refractive 

index n, • 4.00. In case II, the guide has a refractive index n • 4.028, 

dimensions of k d = 5, k b = 10, and is likewise embedded in a Homogeneous 

medium of refractive index n, = 4.00. Case III has a guide of refractive 

index n • 4.04 and dimensions k d = 5, k b = 10 embedded in a sub- 

strate of refractive index n2 
= 4.00 below a material region refractive 

AM  '—   • '         •••—  
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index n, = 1.00. The dimensions in case I were altered relative to tr.ose 

of case III in order to provide q2(0) 
a QT(0). Likewise, the refractive 

index of the guide in case II was altered relative to that of the guide 

in case III to again assure q?{0) = Q .(0). Thus, the exponential varia- 

tion of the normalized attenuation coefficient is the same for the gu'ioes 

in each of cases I, II, and III. 

From Figure 4.3 we see that in addition to a more rapid decrease in 

attenuation with increasing k R , the guide in a dense substrate Delow 

a material interface actually exhibits a lesser absolute attenuation than 

do the guides surrounded by homogeneous media. Indeed, while the differ- 

ence in values of normalized attenuation constant between cases I or II 

and III is less tnan an order of magnitude for k R = 500, it lies oo 
between one and two orders of magnitude for   k R - 5000. 

oo 

The divergent tendency of the curve for case III relative to those 

of cases I and II results from the distinctly different algebraic 

variation with k R. in case III relative to cases I and II. However, 
o o 

this divergent tendency is ultimately overcome by the identical exponen- 

tial decay terms present in each case. This fact is illustrated in 

Figure 4.4, which is a plot of the normalized attenuation constants for 

cases I and III over extended ranges in both the abscissa and the ordinate. 

Recalling the inverse three-halves power algebraic dependence of a 

on k R , we may interpret this behavior as a kind of lateral-wave 

phenomenon due to the presence of the material interface. This interpre- 

tation implies that the direct radiation which accounts for losses of a 

curved guide in a homogeneous medium is, in the case of the guide in a 

dense substrate below a material interface, effectively cancelled by an 

image contribution from the material interface. 

-  - -mrmUtor    • —--'•> -_...^_--M i in - — 
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A-1 

Appenaix A 

Deterruination and Application 

of Source ana Boundary 

Conaitions tor $  , _<t 

A.l.     Introauctior 

Inspection of (2.30a;  through (2.30c) reveals that we nave eight 

unknown transform coefficients, ner.ce we expect to De able to specify 

eight independent equations relating these coefficients as determined 

by boundary ana source conditions on tne field components.    We oegir, by 

considering equations (1.9a)    through (1.9b)    which relate the transforms 

of tne fields transverse to the z-direction to the transforms of the 

cartesian field components.    Direct integration of (1.9a)    through (1.9b) 

after dividing both sides oy a ana multiplying through by J (k.ar) gives 

tne following results: 

0 

CD 

" ' o  [  3    re/    „Xl ,,      ,d* 

0     o 

Er(r,z) -   -2_Ä *r(«.z)Jv(ty*2)a"~ 

(A.la) 

ft ||j i;(a.z)j;(k0«r)<fa 
o   o 

(A.lb) 

—•-- —•-••--• - — • --.— -•        •   «-Iiii«*- •• 
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A-2 

•iyR 

Mr.*)  =7T^   ft«.*)J(k0«r) 
da 

rk JZ     r' v     Q 

'in],2   i     *^a,Z^Jv^Ko'xr^Clu 

'0        0 

Hjr.z)  • -^ 1      *e(a,z)J   (k  ar)^ 

(A.lc) 

+ F   j    ä| ••(-.z)0i(ko«r)d- 
o   J 

(A.li .A. ia) 

A.Z    Boundary Conditions at the Dielectric Interface 

Since E . and £    mus 

(A.la)  and (A.ID) yields 

Since E^ and E    must be continuous at z = 0,  inspection of 

-m »po,0*J  - lpo,0-) 

J     -6/        \ 
)2 

(A.2a) 

(A.2b) 

i = 0+ 'z=0- 

Likewise, continuity of HA and H at z r 0 and inspection of (A.lc) and 

(A.Id) give 

(A.2c) n* $*(a,0+) = n\  *®(a,0-) 

31 Va'Z) 
3 llTW   \ 

'2=0+ z=0- 

(A.2d) 

...' MMHHMiMMMlAi tffci —-  - 
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A. 3 Bounoary ana Source Conditions at the Source Plane 

The continuity of £. and E at z = z' and inspection of (A.la) and 

(A.ID) yields 

•"(a.z'+J • «{W'-) ^n.Oaj 

si *:<••*) aZ     r 
(A.3b) 

'2= Z! + >z= z' 

Using the fact that the magnetic intensity H must be discontinuous 

as tne result of surface currents, while the electric flux density D must 

be discontinuous at points where surface charge accumulations exist, we 

find the additional expressions 

— $   La.Zl XT *r(a,Z) 
oZ    r 

•ivkÄJ (Ur') o v   o 
i2=2'+ Z=Z' 

2 
k  r, ar' 

J'   (k r'a) *"(a.Z'+)   -   «!(a,z'-)   • 
in? v4   0 

(A.3c) 

(A.3d) 

Equations (A.2a)  through (A.2d) and equations (A.3a) through (A.3b) 

constitute the independent set of eignt equations we need in oroer to 

solve for the transform coefficients,    indeed, using (2.30a) and (2.30b) 

with (A.2a)  through (A.2b) we find 

2u 1 
jru2 

u0-u, 
Qm   _   _2 1_   ßm 
nr '    u2+u,      pr 

(A.4a) 

(A.4b) 



W^MB 

2u2n2 Re 
2       2    Bp (A.4c) 

_    VVV2   ße 
(A.4d) 

Likewise, using (2.30b)  and (2.30c) witn (A.3a)  through (A.3d), we nave 

. u0-u,      k u0z' -k u0z'")    „ 
Dm ,      _J_L   e o 2 o 2        Bm 

1 ul  u2 pr 

2        2 fu0n,-u,n9        k u0z'        -k u0z'") 
e _  J   2 1     i2      „ o 2 „    o 2        De D;H 2        ? |   u2n]+u1n2 

2 

Jpr        ~2uT Jv(k0ar') 

pr i2n| v    ° 

pr (A.5b) 

(A.5c) 

(A.5d) 

Since (A.4a)  through (A.4d) and (A.5a)  and (A.5b)  are given in terms of 

either Bm   or B.L, and since these are given explicitly by (A.5c) and (A.5d), pr pr 
m p 

respectively, the transform coefficients • and •' are  now known. 

e      m A.4    Integral  Representations for j  , 4» 

Upon substitution of (A.4a)  through (A.4d) and (A.5a) and (A.5b) 

into (2.30a)  through (2.30c) we find 

ie(a,z)  = B r pr 
-ko(ulz"u22,) 2u„n, 

2        2. 
Vl+Uln2 

,  z > 0 (A.6a) 
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A-5 

2u0        -k (u,2-u02 ) 
4   (a,2;   =  B      e .     Z >  U (A. 6b) 

-e,      .   . Re     (u2nruln2    o
kou2(z+2^ 

»r(o,2J  = B       < * *   e 
J      2    1 I    2 
1       2        2 

2"! 'u1"2 

-k uJz-z'|) 
+ sgn[(2-2')]e   0£ |,    z<J (A.6c) 

„     fUo-Ui      k u0(z+z')        -k„u9 _ _»i] 
^(a,2)=B*       _LJ.   e02 + e    ° 2<Z-Z  >   ,  Z< 0 (A.6d) 

where sgn[(z-z')] in (A.6c)  is the numberical  sign of (2-2'). 

With the field transforms thus specified, we may employ (2.10) 

directly in order to generate the required integral  representations, 

thus 

2      ,     f 

"i4n2     °°e 

2u?n^ -k (u,z-u2z')        2 

 p_2-   e   °    '      l a da,     2> 0 
u2n,+u-]n2 

(A.7a) 

00 

<!<r.x>«   ^U   Vko^HA^ 
oog 

2U2        _~k0U2(2-2')        A 

u-j+u2 
,      2   >   0 (A.7b) 



k L  r'   f 
*V,z)  --2-0      j J'(k ar')H(2)(k ar) 
rv/      .-2      '-i7i      vxo v       o    ' 

i4n~   °°e 

u0nr-u,n,     k u9(z+z') -K u„ Z-Z'*I 
-2 1    ] I   eoZ * sgn[(z-z')j e    °2 ct2da 
u2n1+uln2 i 

z > 0 (A.7c) 

cog 

aa e
kou2(z+z') + e-

kou
2iz-2'iio^) z<0 

u2+Ul 
U2 - 

(A.7d) 
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Appendix B 

The Steepest Descent Evaluation of V" 

dq, 

3£ 

To find the saddle-points of q2(s^)  in  the s?-plane we must evaluate 

, and upon doing this we find 

üüi   r2AS2. i 
dSo " "1 „2    2   1 

(B.l) 

From (B.l ) we conclude that s2 = 0 is a saddle-point for q2(s2).    Further 

analysis shows that for Im   n2 « 1  (as we assume), the path of steepest 

descent is essentially along the  Re s2 axis. 

Differentiation of (B.l) provides 

d q. 

as. 

-2A, 
(B.2) 

s2=0 

Notice that since ä is an even function of s2> then q(s2) is an even 
3 

function of s2, so the coefficient of the s2 term in a Taylor series 

must vanish, thus 

d q, 

ds; 
I* • o (B.3) 

A Taylor series representation of q(s2) through the first four te 

about s2 = 0 is thus, using (B.l), (B.2), and (B.3), 

rms 
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v 0 9 
qo(s9)  • q9(0) -   -x   S 12v°2 2    °2 (B.4a) 

where 

f Y Y"X2 7 
q2(0) - 2 |x2 + \ log   ^> (B.4b) 

Consider now ya for z<0 as given by (3.22c).    If we let u« • is«, e <. i 

then 

p
koX(^'}   ris-nJ-u,«*     ikn(z+z')s? 

Ye(y,y',z,z';s2) -A-,  2       2 iSpH-j+u-jn,, 

+ e 
-iko|z-z'| s2" 

Consideration of (B.5)  for s~ = 0 yields 

(B.5) 

Ye(y,y',z,z';0)  = 0 (B.6) 

so we must evaluate 

*2Y. 

S2 s2=0 

in order to generate the leading term in the asymptotic expansion of 

vf. Doing this, we find 



r 
B-3 

2 

s2=0 

1/2 

- [v 2,  2 n2xV2  j 

t V _^ 1 
2,  2    2,1/2J 

(B.7) 

The leading term of the asymptotic expansion of Vfi has the form 

(cf.  DO]) 

v!(y,y\z,z')' 
k««U0)     rA, 

8^2koRo 

W!     [9       J 
s„=0 

X.  v  2 
-k»{2)4        2 

j  e „2 s?as? 
o n2 Z    Z 

(B.8) 

Using 

2 ,     3/2 
•   -    -x- »= '   n2   \       /r A?\ ^2 

J ."*•*• b)     4*h-li&    3 
2"oo 

and (B.7)  in (B.8), 

v;(y.y,.*.z') 

3/2 

-C. nn. k0R0q2(o: 

16^n2
2koR0    \X2koRoj 

k0A2(y+y') i 
[k°2' - Aa^n] Sz • 4(4^)^ (S.9) 

wh ich is (3.23)  in Section 3.3.2. 
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Appendix C 

The Evaluation of P and C 

C.l.    The Evaluation of P 

Application of (1.3)  to the channel guide cross section in 

Figure 4.1  gives 

o       b 
f        f 

P=2    j  dxj  dy(EnyHnw) 
-d      o "ox ow' (C.l) 

Our consideration of modes far from cutoff manifests itself in (C.l) in 

that the integration can be taken over the guide cross section only. 

Substitution of (4.2b) and (4.2f) in (c.l) yields 

?  ?     ? 9    ® 
?     n   K~K       kJ        f ? f 5> 

P =-2A^     §—*-     •£—   J   sin^[k  (x+£)]dx j   cos^k (w+r,)jdw      (C.2) 
k^    ^o      -d    x      o     w 
x    o 

f   2 
Expansion of the integrand in j sin [k (xH)jdx and use of (0.7a), (D.7b), 

-d    x 

(0.9a), and (0.9b) [cf. Appendix D] gives 

o 
( .  2,   ,.._..      d,n2[    V3 .      "h I 

4 2xA^   ( n Y,+n,kx) J 
sin\(x+Fjax - | • f J     4^' 4,2    + , , .    , 

l(n y3+n1kx   (n Y2+n2 
(C3) 

Similarly, expansion of the integrand of  cos':[kw(w+rl)]dw and use of 

(D.4a), (0.4b), (D.6a), and (D.6b) gives 

b Y_ 

cos'k^wnydw - \ + k!(n2-n|) (C.4) 

.  .;.**•••    -  -• ••••'•   - . jf    ,     • 
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C-2 

A n 
x = T~ 

Va 
4 2 

(n"rY2+n"k 
1   X 

n2Y2 
i 4 2X 4.2« (n Y2

+n2kx) 
! C.5a) 

,     A ;4 
w " .2,  2    2\ k (n -n«J 

(C.56) 

and substituting  (C.3) and (C.4)  into (C.2) gives 

(C6) 

C.2.  The Evaluation of C 

C.2.1    An Explicit Integral  Representation of C 
0    9       9    "\ / 9 

For the circumstance of modes far from cutoff, ß " (n k -k£}'      * nko' 

thus from (4.2a)  and (4.2b) we have  |Ertv/E..|   s ß/kY >> 1, thus we will 

neglect E      as a field source and consider our straight guide modes to nave 

only x-directed components.    Recalling (2.49), where EQr + EQw (i.e., 

E      becomes E      in our local  coordinate system for the straight guide    , or ow 

E     -> E    , and E     -> E    , we conclude that for the special  case we are 

now addressing $m(x,w) = 0 or,  in particular 

**(x,w) - 0 (C7) 

Rewriting (1.4)  in terms of the local  coordinates of the straight 

guide, 

0 

C =  I   iE"x6H-6ExH"}    • adxj 
j        O 0 w 

-d Ix=b 

(C8) 

-    --'•irfiMfliir-'-iW'-•*'-  r Mü 
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The straight guide fields E~ and H~ can be written in the form 

co = coxdx (C.9a) 

H = - H a + H  a„ 
0     OW W   OS  s 

(C.9b) 

Because of the scalar proauct with i that occurs in (C.8) and the forms 

of E~ and H", we conclude that we need only find the components 5E of 
U U A 

6E and <$H    of <5H in order to evaluate C 

Using  (C.7)  in (1.5c) and recalling that we have defined t>    = E 

and $ = H    (where the subscript z becomes x and the subscript y becomes 

s in our local  coordinate system) we have 

2 2,,s 3$, 32HS 

_§. .  e1*  J   ( 4)     jv(knar)ada 

3Z V'2"i "   '"<-    3"r       c       o  » V_2;    "' o- (CIO) 

s ~S    - 
where we have inserted the Hankel Transform representation of H* . Substituting n    rrom 

(1.10c)  in CIO) gives 

2 2„s 34> ! >2~*1 W*-iW£ ir+1 r   -i  ^V*** (C.U) 
0  0     3Z 

However,  since from (3.23) we see that V    is linear in z,  it follows 

3   • 3   4> 
from (2.49)  that  1 :• 0, thus —J- s 0, and CC.11) becomes 

3Z 3Z 

<>oko 
£*!(x»w) 
JW      S 

(C12) 

where we have used r* » -r* » -rf 
0* (tf fln 
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If we  now substitute   (4.1)   into   (3.23)   we  set-  that 

3<J 
3-2- = X k **<x,w) dW 2   o  s 

(C.13) 

so  use of   (C.13)   in   (C.12)   yields 

H6   A  6H6   =     — *   (x,w) s 
(C.14) 

With   (C.9a),    (C.9b),   and   (C.14)   we   find  the  following: 

-_   ,-   - 2  <f     x,w    E       x,w) 
E  x<$H-a =         s ox 
owC 

o 

(C.15) 

SExH       -a     =  -   *   (x,w)H   ,(x,w) 
o w s o4 

(C.16) 

Substitution  of   (C.15)   and   (C.16)   in   (C.8)   yields 

C = j   *®<X,w)     (--^J     Eox(x'w)+Ho4 <x'w>     dx 

w=b 

(C17) 

Finally, we can use (4.2b) and (4.2d) in (C.17) to generate the 

expression 

f°  e [A C  =  -       *   (x,b)    ( — 
Is it 
-d 

n"k k 

2   ~>     2 
n k~-k \ 
 2_ü   (_£\ cos k   (b+n) 

n  k k -1 
~~-   (~)   sink   (b+n)       sink   (x+£) > ß k^ w J x J 

dx (C.18) 

^.._,—. ._   •   ... . ,«n,^h<>Mt^^>J. 
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C.2.2  An Explicit Representation of 0 (x,w) 

Having (C.18), our objective becomes that of finding an explicit forir. 

e 
of 0 (x,w) for the special case under consideration.  Ke begin ~y 

rewriting (3.23) in the abbreviated form (in terms of local coordinates) 

VC(w,w',x,x") = C Vb(w,w')uS(x,x') 
s o e      e 

(C.19a) 

where 

-C 

O   -, 2 2, n ion n k R 
2 o o 

h4J 
A k R j 

V 2 o o/ 

3/2 
k R q (0) 
O 0^2VUy 

(C.19b) 

k X (w-b/2)  k X-(w*-b/2) 
,,S,   ,. ,   o 2 o 2 
V (w,w') A e e 
e      = 

(C.19c) 

u (x,x') A (k x'-k) (k x-k) 
e      =  o  =   o = 

(C.19d) 

where 

K = 
2. 2  2.1/2 

(C.19e) 

Upon substitution of (C.19a) and (4.2b) into (2.64) we find 

2  2, 
2 2  2 

.2    n k -k 
o x 

<t> (w,x) = -AC w(n -n.)R (k> —-)  ——  
s o     2 o 2  „ 2    3k 

3x       x 

r f 
I  VS(w,w') co", k (w'+n)<Sw' j uS(x,x') sink (x'-t^)dx' 

*       e w * . e x 
-d 

(C.20) 

The integral  on   [0,b]   in   (C.20)   becomes,   upon inserting   (C.19c), 

b 

Vs(w,w')   cos k   (w'+rjdw'   = 
w 

k A.(w-|)   fb    k X   <w'-b/2) 
e ° 2       2    J     e ° 2 cos k   (w' + n^dw' 

' w 
(C.21) 
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1,-0 

Carrying out the integration on the KHS of (C.21) and using (D-4a), 

(D-4b), (D-6a), and (D-öb) yields 

I     k X   (w'-b/2) 
C, A j e cos k (w' +n ) dw' 1 -i 

vy-»!'v- i 
r—  I X k      sgn [cos (k b)]   sgnlk -YJ 
ij2o[ w w    4 

(k bX   )/2 -(k  bA   1/2-, 
o     2 o     2 

+  Y     | sgn[oos(k b)j 
4   I W 

(kobA2)/2 
sgn [k -T. J   e -re 

w     4 

sgnl 

0bA2)/2-|j 
(C.22) 

Combining (C.22) with (C.21) we have 

k0X (w---) 

J   e 
V (w,w') cos k (w'+n)dw = c e (C.23) 

The integral on [-d,0] in (C.20) becomes, upon inserting (C.19d), 

f  s 
u (w,w') sin k (x'+Mdx' = 

Je X   ** 
-d 

o 
r 
I 

(k x-k) J (k x'-k) sin k (x'-t-Odx1 
o  = id  o   = 

(C.24) 

Evaluating  the  integral on  the  RHS  of   (C.24)   and using   (D-7a),    (0-7b) 

(4.6a),   and   (4.6b)   we   find 

c 
r 

I1 
-d 

C    A        (k  x'-k)   sin  k   (X'+MüX1   = (   ~ 
2  = o       = x k 

2 2 2         4              <n Y2di"n2) 

sgn   [cos(kd)]   sgn   [n o,k    -   ny^l  —j 4  2  1/0 

(n2kx+n Y2) 
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,42     4, 21/2 , 

K.n2^ 
4   2     4, 2,1/2 

in v-,+n-,k  ) 
• 3     1  x 

2    '   "? 
+ sgn   [cos(k d)]   sgn   [n,n"k -n V0Y,] 

x 1  2  x        '23      ,  4,2.   4  2vly 
(n_k +n Y-.J J 

CC.25) 

2   X 

Combining   lC.2b)   with   (C.24)   we   nave 

•f       s 
u~{x,x')   sin k   (x'+Cv^x"   = C_   (x x-k) 

e x 2       o     = 
tC.26) 

We can now employ (C.19b), (C.23), and (C.26) with (C.20) to 

oroauce tne result 
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e e 

where we  have  also  used we     = -^ 

C. 2 . 3     An  Explicit  i^proser.u^tior.  of  C 

Having   (C.27),   we  need only use  it  with   (C.1B)   to obtain 

i2       2 2     2 
-A C.C-   sgn   tcos(k b) j sgn   [k  -Y/t ] 

12                          w w    * 

.   ,    . 12.2,. J     2.1/2 r,    ,   12 ,2,         2,        1 
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APPENDIX D 

THE EXPLICIT REPRESENTATION OF TRIGONOMETRIC 

FUNCTIONS IN TERMS OF PROBLEM PARAMETERS 

During the course of the analysis in Appendix C we employ a set of 

identities which express trigonometric functions explicitly in terms cf 

the eigenvalues K , K  and the material parameters of our proolem. The 
x  w v 

development of these identities from equations (4.4a), (4.4b), (4.6a), 

and (4.6b) is a straightforward arithmetical procedure, but one must 

exercise care In accounting for a multitude of possible choices of 

numerical sign if ambiguous results are  to be avoided. 

Consideration of (4.4a) and (4.4b) reveals that the eigenvalues 

K , K  may be either less than or greater than zero. Indeed, review of 

the field expressions (4.2a) through (4.2f) shows that the numerical signs 

of    K     and    K      don't effect tnese formulae at all;    i.e., the field x w 

expressions depend on |K | and |K |. We are thus, free to choose tne 

numerical signs of K  and K  and will choose these to be the positive 3     x     w r 

solutions of the eigenvalue equations (4.4a) and (4.b). 

Consider now equations (4.6a) and (4.6b). Since we choose ,< > 0 and 

K > 0, and since y_ > 0 and y, >  0, we can always find solutions 5 

and n such that 

-7T 

2K. < £ < 0 (0.U) 
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2K. < r, < 0 

Choosing £ and n as in (D.la) and (D.lb), respectively we have 

(D.lb) 

sin(K n) < 0 

cos(Kwn) > 0 

sin(Kxd < 0 

cos(KxC) > 0 

(D.2a) 

(D.Zb) 

(D.2c) 

(D.2c) 

We can now proceed to outline the derivation of the identities we 

require in Appendix C. 

Using the trigonometric    identites 

sgn[cos 8 ]tan 6 Sin u = -a~i- i—r— 
(1 + tarrer 

cos 6 - s9n[cose] 

(1 + tarT6) 

^D.3a / 

(0.3b) 

with (4.6b) and  (D.2a),  (D.2b), we find 

sin(Kwn) - - —      4   2 ,- 
kQ(n    - n2) 

COS(k   n)   =      o ö-!- 

kQ(n2 - nf? 

Similarly, use of (4.4b)    with (0.3a),  (0.3b) gives 

sgn[cos(Kwb)]sgn[^-Y4](2KwY4) 
sin(K b)  =  27~2 2,  

(0.4a) 

(D.4b) 

(D.5a) 
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sgn[cos(K b)3|K* - Y|l 
cos(K b) =  9 3 w s~= =- 

w     kJ(nZ - n|) 
(0.5b] 

The use of both (D.4a), (D.4b) and (D.5a), (D.5b) with the standard 

trigonometric identities for sines and cosines of angular sums yit'.cs 

9 9       Y A 
sin[K (b + n)] = sgn[cos(K b)]sgn[K" - YAJ  ^ s-% 

k (n - n0) 
(0.6ai 

2   2- cosUw(b^n)] - sgn[cos(K b)]sgn[K£ - y|]  g^l-^- (D.6b) 

Now, proceeding in a similar way, one employs (4.6a) with (D.3a), 

(D.3b) and (D.2c), (0.2(1) to produce 

-K n? x 1 sin v 'tffrW C7a) 

T3n 
cos Kxc =   7T1 4~77 (n\2 + n4K2} 

(0.7b) 

Using (D.3a) and (D.3b) with (4.4a) one finds 

sgn[cos(Kxd)]sgn[n2
1n2K^- n4y2Y3]n Kx(n

2Y2 + n|yj 

2 2 2   4 sgn[cos(Kxd)]|n1n2Kx - n Y2Y3i 

(0.8a) 

(0.8b) 
3' v"2 x  " T2; 

Finally, use of (D.7a), (0.7b) and (D.8a), (D.8b) with the trigonometric 

formulae for angular sums and differences yields 
2 2 2   4    2 

- sgn[cos(K d)]sgn[n,n2K - n YoY^JnX 
sin[Kx(- - d)] -  -___-_ 

(n,K + n Yo) '2 x (D.9a) 
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cos[Kx(£-d)] 
;gn[cos(Kxd)] sgn [n1n2K^ - n Y2Y3]n2Y2 

(D.9b) 
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V2(y+y' ^ [v • z£H [v • W"°    M 

which is (3.23) in Section 3.3.2. 



cos k (w+rydw 
b * + 2  + k2(n2-n|) 

(C.4) 



Rewriting (1.4)  in terms of the local coordinates ot tne sircu^m. 

guide, 

C =  f  t£>6H-6ExH"}    • a,,dx 
i o w 

(C.8) 

x=b 


